Papers
Topics
Authors
Recent
2000 character limit reached

Ropelength, crossing number and finite type invariants of links

Published 13 Apr 2016 in math.GT | (1604.03870v3)

Abstract: Ropelength and embedding thickness are related measures of geometric complexity of classical knots and links in Euclidean space. In their recent work, Freedman and Krushkal posed a question regarding lower bounds for embedding thickness of $n$-component links in terms of the Milnor linking numbers. The main goal of the current paper is to provide such estimates and thus generalizing the known linking number bound. In the process, we collect several facts about finite type invariants and ropelength/crossing number of knots. We give examples of families of knots, where such estimates behave better than the well-known knot-genus estimate.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.