Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Geodesic period integrals of eigenfunctions on Riemannian surfaces and the Gauss-Bonnet Theorem (1604.03189v2)

Published 12 Apr 2016 in math.AP, math.CA, math.DG, and math.SP

Abstract: We use the Gauss-Bonnet theorem and the triangle comparison theorems of Rauch and Toponogov to show that on compact Riemann surfaces of negative curvature period integrals of eigenfunctions $e_\lambda$ over geodesics go to zero at the rate of $O((\log\lambda){-1/2})$ if $\lambda$ are their frequencies. As discussed in \cite{CSPer}, no such result is possible in the constant curvature case if the curvature is $\ge0$. Notwithstanding, we also show that these bounds for period integrals are valid provided that integrals of the curvature over all geodesic balls of radius $r\le 1$ are pinched from above by $-\delta rN$ for some fixed $N$ and $\delta>0$. This allows, for instance, the curvature to be nonpositive and to vanish of finite order at a finite number of isolated points. Naturally, the above results also hold for the appropriate type of quasi-modes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.