Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On integrals of eigenfunctions over geodesics (1302.5597v3)

Published 22 Feb 2013 in math.AP and math.DG

Abstract: If $(M,g)$ is a compact Riemannian surface then the integrals of $L2(M)$-normalized eigenfunctions $e_j$ over geodesic segments of fixed length are uniformly bounded. Also, if $(M,g)$ has negative curvature and $\gamma(t)$ is a geodesic parameterized by arc length, the measures $e_j(\gamma(t))\, dt$ on $\R$ tend to zero in the sense of distributions as the eigenvalue $\la_j\to \infty$, and so integrals of eigenfunctions over periodic geodesics tend to zero as $\la_j\to \infty$. The assumption of negative curvature is necessary for the latter result.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.