Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Łojasiewicz inequalities with explicit exponent for smallest singular value functions (1604.02805v1)

Published 11 Apr 2016 in math.AG

Abstract: Let $F(x) := (f_{ij}(x)){i=1,\ldots,p; j=1,\ldots,q},$ be a ($p\times q$)-real polynomial matrix and let $f(x)$ be the smallest singular value function of $F(x).$ In this paper, we first give the following {\em nonsmooth} version of \L ojasiewicz gradient inequality for the function $f$ with an explicit exponent: {\em For any $\bar x\in \Bbb Rn$, there exist $c > 0$ and $\epsilon > 0$ such that we have for all $|x - \bar{x}| < \epsilon,$ \begin{equation*} \inf { | w | \ : \ w \in {\partial} f(x) } \ \ge \ c\, |f(x)-f(\bar x)|{1 - \frac{2}{\mathscr R(n+p,2d+2)}}, \end{equation*} where ${\partial} f(x)$ is the limiting subdifferential of $f$ at $x$, $d:=\max{i=1,\ldots,p; j=1,\ldots,q}\deg f_{i j}$ and $\mathscr R(n, d) := d(3d - 3){n-1}$ if $d \ge 2$ and $\mathscr R(n, d) := 1$ if $d = 1.$} Then we establish some versions of \L ojasiewicz inequality for the distance function with explicit exponents, locally and globally, for the smallest singular value function $f(x)$ of the matrix $F(x)$.

Summary

We haven't generated a summary for this paper yet.