2000 character limit reached
The 3D-index and normal surfaces (1604.02688v1)
Published 10 Apr 2016 in math.GT and hep-th
Abstract: Dimofte, Gaiotto and Gukov introduced a powerful invariant, the 3D-index, associated to a suitable ideal triangulation of a 3-manifold with torus boundary components. The 3D-index is a collection of formal power series in $q{1/2}$ with integer coefficients. Our goal is to explain how the 3D-index is a generating series of normal surfaces associated to the ideal triangulation. This shows a connection of the 3D-index with classical normal surface theory, and fulfills a dream of constructing topological invariants of 3-manifolds using normal surfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.