Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantile Processes for Semi and Nonparametric Regression

Published 7 Apr 2016 in math.ST and stat.TH | (1604.02130v2)

Abstract: A collection of quantile curves provides a complete picture of conditional distributions. Properly centered and scaled versions of estimated curves at various quantile levels give rise to the so-called quantile regression process (QRP). In this paper, we establish weak convergence of QRP in a general series approximation framework, which includes linear models with increasing dimension, nonparametric models and partial linear models. An interesting consequence is obtained in the last class of models, where parametric and non-parametric estimators are shown to be asymptotically independent. Applications of our general process convergence results include the construction of non-crossing quantile curves and the estimation of conditional distribution functions. As a result of independent interest, we obtain a series of Bahadur representations with exponential bounds for tail probabilities of all remainder terms. Bounds of this kind are potentially useful in analyzing statistical inference procedures under divide-and-conquer setup.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.