Quantile Processes for Semi and Nonparametric Regression
Abstract: A collection of quantile curves provides a complete picture of conditional distributions. Properly centered and scaled versions of estimated curves at various quantile levels give rise to the so-called quantile regression process (QRP). In this paper, we establish weak convergence of QRP in a general series approximation framework, which includes linear models with increasing dimension, nonparametric models and partial linear models. An interesting consequence is obtained in the last class of models, where parametric and non-parametric estimators are shown to be asymptotically independent. Applications of our general process convergence results include the construction of non-crossing quantile curves and the estimation of conditional distribution functions. As a result of independent interest, we obtain a series of Bahadur representations with exponential bounds for tail probabilities of all remainder terms. Bounds of this kind are potentially useful in analyzing statistical inference procedures under divide-and-conquer setup.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.