Papers
Topics
Authors
Recent
2000 character limit reached

Safe Probability (1604.01785v1)

Published 6 Apr 2016 in stat.ME, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: We formalize the idea of probability distributions that lead to reliable predictions about some, but not all aspects of a domain. The resulting notion of `safety' provides a fresh perspective on foundational issues in statistics, providing a middle ground between imprecise probability and multiple-prior models on the one hand and strictly Bayesian approaches on the other. It also allows us to formalize fiducial distributions in terms of the set of random variables that they can safely predict, thus taking some of the sting out of the fiducial idea. By restricting probabilistic inference to safe uses, one also automatically avoids paradoxes such as the Monty Hall problem. Safety comes in a variety of degrees, such as "validity" (the strongest notion), "calibration", "confidence safety" and "unbiasedness" (almost the weakest notion).

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.