Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Application of Modal Filtering to a Spectral Difference Method (1604.00929v2)

Published 4 Apr 2016 in math.NA

Abstract: We adapt the spectral viscosity (SV) formulation implemented as a modal filter to a Spectral Difference Method (SD) solving hyperbolic conservation laws. In the SD Method we use selections of different orthogonal polynomials (APK polynomials). Furthermore we obtain new error bounds for filtered APK extensions of smooth functions. We demonstrate that the modal filter also depends on the chosen polynomial basis in the SD Method. Spectral filtering stabilizes the scheme and leaves weaker oscillations. Hence, the selection of the family of orthogonal polynomials on triangles and their specific modal filter possesses a positive influence on the stability and accuracy of the SD Method. In the second part, we initiate a stability analysis for a linear scalar test case with periodic initial condition to find the best selection of APK polynomials and their specific modal filter. To the best of our knowledge, this work is the first that gives a stability analysis for a scheme with spectral filtering. Finally, we demonstrate the influence of the underlying basis of APK polynomials in a well-known test case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.