Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the cusp anomalous dimension in the ladder limit of $\mathcal N=4$ SYM (1604.00897v1)

Published 4 Apr 2016 in hep-th

Abstract: We analyze the cusp anomalous dimension in the (leading) ladder limit of $\mathcal N=4$ SYM and present new results for its higher-order perturbative expansion. We study two different limits with respect to the cusp angle $\phi$. The first is the light-like regime where $x = e{i\,\phi}\to 0$. This limit is characterised by a non-trivial expansion of the cusp anomaly as a sum of powers of $\log x$, where the maximum exponent increases with the loop order. The coefficients of this expansion have remarkable transcendentality features and can be expressed by products of single zeta values. We show that the whole logarithmic expansion is fully captured by a solvable Woods-Saxon like one-dimensional potential. From the exact solution, we extract generating functions for the cusp anomaly as well as for the various specific transcendental structures appearing therein. The second limit that we discuss is the regime of small cusp angle. In this somewhat simpler case, we show how to organise the quantum mechanical perturbation theory in a novel efficient way by means of a suitable all-order Ansatz for the ground state of the associated Schr\"odinger problem. Our perturbative setup allows to systematically derive higher-order perturbative corrections in powers of the cusp angle as explicit non-perturbative functions of the effective coupling. This series approximation is compared with the numerical solution of the Schr\"odinger equation to show that we can achieve very good accuracy over the whole range of coupling and cusp angle. Our results have been obtained by relatively simple techniques. Nevertheless, they provide several non-trivial tests useful to check the application of Quantum Spectral Curve methods to the ladder approximation at non zero $\phi$, in the two limits we studied.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.