Large sample behaviour of high dimensional autocovariance matrices (1603.09145v1)
Abstract: The existence of limiting spectral distribution (LSD) of $\hat{\Gamma}_u+\hat{\Gamma}_u*$, the symmetric sum of the sample autocovariance matrix $\hat{\Gamma}_u$ of order $u$, is known when the observations are from an infinite dimensional vector linear process with appropriate (strong) assumptions on the coefficient matrices. Under significantly weaker conditions, we prove, in a unified way, that the LSD of any symmetric polynomial in these matrices such as $\hat{\Gamma}_u+\hat{\Gamma}_u*$, $\hat{\Gamma}_u\hat{\Gamma}_u*$, $\hat{\Gamma}_u\hat{\Gamma}_u+\hat{\Gamma}_k\hat{\Gamma}_k^$ exist. Our approach is through the more intuitive algebraic method of free probability in conjunction with the method of moments. Thus, we are able to provide a general description for the limits in terms of some freely independent variables. All the previous results follow as special cases. We suggest statistical uses of these LSD and related results in order determination and white noise testing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.