Algorithms for Batch Hierarchical Reinforcement Learning (1603.08869v1)
Abstract: Hierarchical Reinforcement Learning (HRL) exploits temporal abstraction to solve large Markov Decision Processes (MDP) and provide transferable subtask policies. In this paper, we introduce an off-policy HRL algorithm: Hierarchical Q-value Iteration (HQI). We show that it is possible to effectively learn recursive optimal policies for any valid hierarchical decomposition of the original MDP, given a fixed dataset collected from a flat stochastic behavioral policy. We first formally prove the convergence of the algorithm for tabular MDP. Then our experiments on the Taxi domain show that HQI converges faster than a flat Q-value Iteration and enjoys easy state abstraction. Also, we demonstrate that our algorithm is able to learn optimal policies for different hierarchical structures from the same fixed dataset, which enables model comparison without recollecting data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.