Model Completeness for Henselian Fields with finite ramification valued in a $Z$-Group (1603.08598v1)
Abstract: We prove that the theory of a Henselian valued field of characteristic zero, with finite ramification, and whose value group is a $Z$-group, is model-complete in the language of rings if the theory of its residue field is model-complete in the language of rings. We apply this to prove that every infinite algebraic extension of the field of $p$-adic numbers $\Bbb Q_p$ with finite ramification is model-complete in the language of rings. For this, we give a necessary and sufficient condition for model-completeness of the theory of a perfect pseudo-algebraically closed field with pro-cyclic absolute Galois group.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.