Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Hierarchical Gaussian Mixture Model with Objects Attached to Terminal and Non-terminal Dendrogram Nodes (1603.08342v1)

Published 28 Mar 2016 in cs.LG and cs.CV

Abstract: A hierarchical clustering algorithm based on Gaussian mixture model is presented. The key difference to regular hierarchical mixture models is the ability to store objects in both terminal and nonterminal nodes. Upper levels of the hierarchy contain sparsely distributed objects, while lower levels contain densely represented ones. As it was shown by experiments, this ability helps in noise detection (modelling). Furthermore, compared to regular hierarchical mixture model, the presented method generates more compact dendrograms with higher quality measured by adopted F-measure.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.