Papers
Topics
Authors
Recent
2000 character limit reached

Fisher, Neyman-Pearson or NHST? A Tutorial for Teaching Data Testing

Published 24 Mar 2016 in stat.OT, math.ST, and stat.TH | (1603.07408v1)

Abstract: Despite frequent calls for the overhaul of null hypothesis significance testing (NHST), this controversial procedure remains ubiquitous in behavioral, social and biomedical teaching and research. Little change seems possible once the procedure becomes well ingrained in the minds and current practice of researchers; thus, the optimal opportunity for such change is at the time the procedure is taught, be this at undergraduate or at postgraduate levels. This paper presents a tutorial for the teaching of data testing procedures, often referred to as hypothesis testing theories. The first procedure introduced is the approach to data testing followed by Fisher (tests of significance); the second is the approach followed by Neyman and Pearson (tests of acceptance); the final procedure is the incongruent combination of the previous two theories into the current approach (NSHT). For those researchers sticking with the latter, two compromise solutions on how to improve NHST conclude the tutorial.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.