Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multiple positive solutions of the stationary Keller-Segel system (1603.07374v1)

Published 23 Mar 2016 in math.AP

Abstract: We consider the stationary Keller-Segel equation \begin{equation*} \begin{cases} -\Delta v+v=\lambda ev, \quad v>0 \quad & \text{in }\Omega,\ \partial_\nu v=0 &\text{on } \partial \Omega, \end{cases} \end{equation*} where $\Omega$ is a ball. In the regime $\lambda\to 0$, we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given natural positive number $n$, we build a solution having multiple layers at $r_1,\ldots,r_n$ by which we mean that the solutions concentrate on the spheres of radii $r_i$ as $\lambda\to 0$ (for all $i=1,\ldots,n$). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of $\Omega$ as $\lambda\to 0$. Instead they satisfy an optimal partition problem in the limit.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.