Papers
Topics
Authors
Recent
2000 character limit reached

Data Augmentation via Levy Processes (1603.06340v1)

Published 21 Mar 2016 in stat.ML

Abstract: If a document is about travel, we may expect that short snippets of the document should also be about travel. We introduce a general framework for incorporating these types of invariances into a discriminative classifier. The framework imagines data as being drawn from a slice of a Levy process. If we slice the Levy process at an earlier point in time, we obtain additional pseudo-examples, which can be used to train the classifier. We show that this scheme has two desirable properties: it preserves the Bayes decision boundary, and it is equivalent to fitting a generative model in the limit where we rewind time back to 0. Our construction captures popular schemes such as Gaussian feature noising and dropout training, as well as admitting new generalizations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.