Papers
Topics
Authors
Recent
2000 character limit reached

Regularization based on all-at-once formulations for inverse problems (1603.05332v1)

Published 17 Mar 2016 in math.NA

Abstract: Parameter identification problems typically consist of a model equation, e.g. a (system of) ordinary or partial differential equation(s), and the observation equation. In the conventional reduced setting, the model equation is eliminated via the parameter-to-state map. Alternatively, one might consider both sets of equations (model and observations) as one large system, to which some regularization method is applied. The choice of the formulation (reduced or all-at-once) can make a large difference computationally, depending on which regularization method is used: Whereas almost the same optimality system arises for the reduced and the all-at-once Tikhonov method, the situation is different for iterative methods, especially in the context of nonlinear models. In this paper we will exemplarily provide some convergence results for all-at-once versions of variational, Newton type and gradient based regularization methods. Moreover we will compare the implementation requirements for the respective all-at-one and reduced versions and provide some numerical comparison.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.