Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lie algebroids, gauge theories, and compatible geometrical structures (1603.04490v2)

Published 14 Mar 2016 in math.DG, hep-th, math-ph, math.AP, and math.MP

Abstract: The construction of gauge theories beyond the realm of Lie groups and algebras leads one to consider Lie groupoids and algebroids equipped with additional geometrical structures which, for gauge invariance of the construction, need to satisfy particular compatibility conditions. This paper analyzes these compatibilities from a mathematical perspective. In particular, we show that the compatibility of a connection with a Lie algebroid that one finds is the Cartan condition, introduced previously by A. Blaom. For the metric on the base M of a Lie algebroid equipped with any connection, we show that the compatibility suggested from gauge theories implies that the (possibly singular) foliation induced by the Lie algebroid becomes a Riemannian foliation. Building upon a result of del Hoyo and Fernandes, we prove furthermore that every Lie algebroid integrating to a proper Lie groupoid admits a compatible Riemannian base. We also consider the case where the base is equipped with a compatible symplectic or generalized metric structure.

Citations (13)

Summary

We haven't generated a summary for this paper yet.