Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Mathematics of Xenology: Di-cographs, Symbolic Ultrametrics, 2-structures and Tree-representable Systems of Binary Relations

Published 8 Mar 2016 in cs.DM | (1603.02467v1)

Abstract: The concepts of orthology, paralogy, and xenology play a key role in molecular evolution. Orthology and paralogy distinguish whether a pair of genes originated by speciation or duplication. The corresponding binary relations on a set of genes form complementary cographs. Allowing more than two types of ancestral event types leads to symmetric symbolic ultrametrics. Horizontal gene transfer, which leads to xenologous gene pairs, however, is inherent asymmetric since one offspring copy "jumps" into another genome, while the other continues to be inherited vertically. We therefore explore here the mathematical structure of the non-symmetric generalization of symbolic ultrametrics. Our main results tie non-symmetric ultrametrics together with di-cographs (the directed generalization of cographs), so-called uniformly non-prime 2-structures, and hierarchical structures on the set of strong modules. This yields a characterization of relation structures that can be explained in terms of trees and types of ancestral events. This framework accommodates a horizontal-transfer relation in terms of an ancestral event and thus, is slightly different from the the most commonly used definition of xenology.

Citations (45)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.