Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems

Published 8 Mar 2016 in math.OC, cs.LG, and stat.ML | (1603.02412v1)

Abstract: We consider a composite convex minimization problem associated with regularized empirical risk minimization, which often arises in machine learning. We propose two new stochastic gradient methods that are based on stochastic dual averaging method with variance reduction. Our methods generate a sparser solution than the existing methods because we do not need to take the average of the history of the solutions. This is favorable in terms of both interpretability and generalization. Moreover, our methods have theoretical support for both a strongly and a non-strongly convex regularizer and achieve the best known convergence rates among existing nonaccelerated stochastic gradient methods.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.