Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Counting rational points of an algebraic variety over finite fields (1603.01828v1)

Published 6 Mar 2016 in math.NT

Abstract: Let $\mathbb{F}q$ denote the finite field of odd characteristic $p$ with $q$ elements ($q=p{n},n\in \mathbb{N} $) and $\mathbb{F}_q*$ represent the nonzero elements of $\mathbb{F}{q}$. In this paper, by using the Smith normal form we give an explicit formula for the number of rational points of the algebraic variety defined by the following system of equations over $\mathbb{F}{q}$: \begin{align*} {\left{\begin{array}{rl} &\sum{i=1}{r_1}a_{1i}x_1{e{(1)}_{i1}}...x_{n_1}{e{(1)}_{i,n_1}} +\sum_{i=r_1+1}{r_2}a_{1i}x_1{e{(1)}_{i1}}...x_{n_2}{e{(1)}_{i,n_2}}-b_1=0,\ &\sum_{j=1}{r_3}a_{2j}x_1{e{(2)}_{j1}}...x_{n_3}{e{(2)}_{j,n_3}} +\sum_{j=r_3+1}{r_4}a_{2j}x_1{e{(2)}_{j1}}...x_{n_4}{e{(2)}_{j,n_4}}-b_2=0, \end{array}\right.} \end{align*} where the integers $1\leq r_1<r_2$, $1\leq r_3<r_4$, $1\le n_1<n_2$, $1\le n_3<n_4$, $n_1\leq n_3$, $b_1, b_2\in \mathbb{F}{q}$, $a{1i}\in \mathbb{F}{q}{*}$ $(1\leq i\leq r_2)$, $a{2j}\in \mathbb{F}_{q}{*}$$(1\leq j\leq r_4)$ and the exponent of each variable is a positive integer. An example is also presented to demonstrate the validity of the main result.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.