Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An improvement on the Rado bound for the centerline depth (1603.01641v2)

Published 3 Mar 2016 in math.MG and math.CO

Abstract: Let $\mu$ be a Borel probability measure in $\mathbb Rd$. For a $k$-flat $\alpha$ consider the value $\inf \mu(H)$, where $H$ runs through all half-spaces containing $\alpha$. This infimum is called the half-space depth of $\alpha$. Bukh, Matou\v{s}ek and Nivasch conjectured that for every $\mu$ and every $0 \leq k < d$ there exists a $k$-flat with the depth at least $\tfrac{k + 1}{k + d + 1}$. The Rado Centerpoint Theorem implies a lower bound of $\tfrac{1}{d + 1 - k}$ (the Rado bound), which is, in general, much weaker. Whenever the Rado bound coincides with the bound conjectured by Bukh, Matou\v{s}ek and Nivasch, i.e., for $k = 0$ and $k = d - 1$, it is known to be optimal. In this paper we show that for all other pairs $(d, k)$ one can improve on the Rado bound. If $k = 1$ and $d \geq 3$ we show that there is a 1-dimensional line with the depth at least $\tfrac{1}{d} + \tfrac{1}{3d3}$. As a corollary, for all $(d, k)$ satisfying $0 < k < d - 1$ there exists a $k$-flat with depth at least $\tfrac{1}{d + 1 - k} + \tfrac{1}{3(d + 1 - k)3}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube