Good reduction and canonical heights of subvarieties
Abstract: We bound the length of the periodic part of the orbit of a preperiodic rational subvariety via good reduction information. This bound depends only on the degree of the map, the degree of the subvariety, the dimension of the projective space, the degree of the number field, and the prime of good reduction. As part of the proof, we extend the corresponding good reduction bound for points proven by the author for non-singular varieties to all projective varieties. Toward proving an absolute bound on the period for a given map, we study the canonical height of a subvariety via Chow forms and compute the bound between the height and canonical height of a subvariety. This gives the existence of a bound on the number of preperiodic rational subvarieties of bounded degree for a given map. An explicit bound is given for hypersurfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.