A Bayesian baseline for belief in uncommon events (1602.07836v2)
Abstract: The plausibility of uncommon events and miracles based on testimony of such an event has been much discussed. When analyzing the probabilities involved, it has mostly been assumed that the common events can be taken as data in the calculations. However, we usually have only testimonies for the common events. While this difference does not have a significant effect on the inductive part of the inference, it has a large influence on how one should view the reliability of testimonies. In this work, a full Bayesian solution is given for the more realistic case, where one has a large number of testimonies for a common event and one testimony for an uncommon event. It is seen that, in order for there to be a large amount of testimonies for a common event, the testimonies will probably be quite reliable. For this reason, because the testimonies are quite reliable based on the testimonies for the common events, the probability for the uncommon event, given a testimony for it, is also higher. Hence, one should be more open-minded when considering the plausibility of uncommon events.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.