Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Computing halting probabilities from other halting probabilities (1602.06395v2)

Published 20 Feb 2016 in cs.CC

Abstract: The halting probability of a Turing machine is the probability that the machine will halt if it starts with a random stream written on its one-way input tape. When the machine is universal, this probability is referred to as Chaitin's omega number, and is the most well known example of a real which is random in the sense of Martin-L\"{o}f. Although omega numbers depend on the underlying universal Turing machine, they are robust in the sense that they all have the same Turing degree, namely the degree of the halting problem. In this paper we give precise bounds on the redundancy growth rate that is generally required for the computation of an omega number from another omega number. We show that for each $\epsilon >1$, any pair of omega numbers compute each other with redundancy $\epsilon \log n$. On the other hand, this is not true for $\epsilon=1$. In fact, we show that for each omega number there exists another omega number which is not computable from the first one with redundancy $\log n$. This latter result improves an older result of Frank Stephan.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.