Large age-gap face verification by feature injection in deep networks (1602.06149v1)
Abstract: This paper introduces a new method for face verification across large age gaps and also a dataset containing variations of age in the wild, the Large Age-Gap (LAG) dataset, with images ranging from child/young to adult/old. The proposed method exploits a deep convolutional neural network (DCNN) pre-trained for the face recognition task on a large dataset and then fine-tuned for the large age-gap face verification task. Finetuning is performed in a Siamese architecture using a contrastive loss function. A feature injection layer is introduced to boost verification accuracy, showing the ability of the DCNN to learn a similarity metric leveraging external features. Experimental results on the LAG dataset show that our method is able to outperform the face verification solutions in the state of the art considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.