Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo (1602.05490v1)
Abstract: We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital paramaters. Furthermore, for a large multi-determinant expansion, the significant computational gain recently reported for the calculation of the wave function is here improved and extended to all local properties in both all-electron and pseudopotential calculations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.