Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Density-based Denoising of Point Cloud (1602.05312v1)

Published 17 Feb 2016 in cs.CV

Abstract: Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this deficiency, a density-based point cloud denoising method is presented to remove outliers and noisy points. First, particle-swam optimization technique is employed for automatically approximating optimal bandwidth of multivariate kernel density estimation to ensure the robust performance of density estimation. Then, mean-shift based clustering technique is used to remove outliers through a thresholding scheme. After removing outliers from the point cloud, bilateral mesh filtering is applied to smooth the remaining points. The experimental results show that this approach, comparably, is robust and efficient.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.