Papers
Topics
Authors
Recent
2000 character limit reached

Exploring triad-rich substructures by graph-theoretic characterizations in complex networks (1602.05286v1)

Published 17 Feb 2016 in physics.soc-ph and cs.SI

Abstract: One of the most important problems in complex networks is how to detect metadata groups accurately. The main challenge lies in the fact that traditional structural communities do not always capture the intrinsic features of metadata groups. Motivated by the observation that metadata groups in PPI networks tend to consist of an abundance of interacting triad motifs, we define a 2-club substructure with diameter 2 which possessing triad-rich property to describe a metadata group. Based on the triad-rich substructure, we design a DIVision Algorithm using our proposed edge Niche Centrality DIVANC to detect metadata groups effectively in complex networks. We also extend DIVANC to detect overlapping metadata groups by proposing a simple 2-hop overlapping strategy. To verify the effectiveness of triad-rich substructures, we compare DIVANC with existing algorithms on PPI networks, LFR synthetic networks and football networks. The experimental results show that DIVANC outperforms most other algorithms significantly and, in particular, can detect sparse metadata groups.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.