Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation (1602.04550v1)

Published 15 Feb 2016 in physics.comp-ph

Abstract: The prohibitive cost of performing Uncertainty Quantification (UQ) tasks with a very large number of input parameters can be addressed, if the response exhibits some special structure that can be discovered and exploited. Several physical responses exhibit a special structure known as an active subspace (AS), a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction with the AS represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold. The additional benefit of our probabilistic formulation is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one-dimensional granular system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube