Papers
Topics
Authors
Recent
2000 character limit reached

Efficient weight vectors from pairwise comparison matrices

Published 10 Feb 2016 in math.OC | (1602.03311v4)

Abstract: Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios cannot be improved in all non-diagonal positions. We show that the principal eigenvector is always weakly efficient, but numerical examples show that it can be inefficient. The linear programs proposed test whether a given weight vector is (weakly) efficient, and in case of (strong) inefficiency, an efficient (strongly) dominating weight vector is calculated. The proposed algorithms are implemented in Pairwise Comparison Matrix Calculator, available at pcmc.online.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.