Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Efficient Algorithms with Hierarchical Attentive Memory (1602.03218v2)

Published 9 Feb 2016 in cs.LG

Abstract: In this paper, we propose and investigate a novel memory architecture for neural networks called Hierarchical Attentive Memory (HAM). It is based on a binary tree with leaves corresponding to memory cells. This allows HAM to perform memory access in O(log n) complexity, which is a significant improvement over the standard attention mechanism that requires O(n) operations, where n is the size of the memory. We show that an LSTM network augmented with HAM can learn algorithms for problems like merging, sorting or binary searching from pure input-output examples. In particular, it learns to sort n numbers in time O(n log n) and generalizes well to input sequences much longer than the ones seen during the training. We also show that HAM can be trained to act like classic data structures: a stack, a FIFO queue and a priority queue.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube