Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation (1602.02646v1)

Published 8 Feb 2016 in math.NA

Abstract: In this paper, we study and implement the structural iterative eigensolvers for the large-scale eigenvalue problem in the Bethe-Salpeter equation (BSE) based on the reduced basis approach via low-rank factorizations in generating matrices, introduced in the previous paper. The approach reduces numerical costs down to $\mathcal{O}(N_b2)$ in the size of atomic orbitals basis set, $N_b$, instead of practically intractable $\mathcal{O}(N_b6)$ complexity scaling for the direct diagonalization of the BSE matrix. As an alternative to rank approximation of the static screen interaction part of the BSE matrix, we propose to restrict it to a small active sub-block, with a size balancing the storage for rank-structured representations of other matrix blocks. We demonstrate that the enhanced reduced-block approximation exhibits higher precision within the controlled numerical cost, providing as well a distinct two-sided error estimate for the BSE eigenvalues. It is shown that further reduction of the asymptotic computational cost is possible due to ALS-type iteration in block tensor train (TT) format applied to the quantized-TT (QTT) tensor representation of both long eigenvectors and rank-structured matrix blocks. The QTT-rank of these entities possesses almost the same magnitude as the number of occupied orbitals in the molecular systems, $N_o$, hence the overall asymptotic complexity for solving the BSE problem can be estimated by $\mathcal{O}(\log(N_o) N_o{2})$. We confirm numerically a considerable decrease in computational time for the presented iterative approach applied to various compact and chain-type molecules, while supporting sufficient accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube