Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparse Kalman Filtering Approaches to Covariance Estimation from High Frequency Data in the Presence of Jumps (1602.02185v2)

Published 5 Feb 2016 in q-fin.ST and stat.ME

Abstract: Estimation of the covariance matrix of asset returns from high frequency data is complicated by asynchronous returns, market mi- crostructure noise and jumps. One technique for addressing both asynchronous returns and market microstructure is the Kalman-EM (KEM) algorithm. However the KEM approach assumes log-normal prices and does not address jumps in the return process which can corrupt estimation of the covariance matrix. In this paper we extend the KEM algorithm to price models that include jumps. We propose two sparse Kalman filtering approaches to this problem. In the first approach we develop a Kalman Expectation Conditional Maximization (KECM) algorithm to determine the un- known covariance as well as detecting the jumps. For this algorithm we consider Laplace and the spike and slab jump models, both of which promote sparse estimates of the jumps. In the second method we take a Bayesian approach and use Gibbs sampling to sample from the posterior distribution of the covariance matrix under the spike and slab jump model. Numerical results using simulated data show that each of these approaches provide for improved covariance estima- tion relative to the KEM method in a variety of settings where jumps occur.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.