Papers
Topics
Authors
Recent
2000 character limit reached

Rational Mixed Tate Motivic Graphs (1602.01478v1)

Published 3 Feb 2016 in math.AG and math.CO

Abstract: In this paper, we study the combinatorics of a subcomplex of the Bloch-Kriz cycle complex [4] used to construct the category of mixed Tate motives. The algebraic cycles we consider properly contain the subalgebra of cycles that correspond to multiple logarithms (as defined in [12]). We associate an algebra of graphs to our subalgebra of algebraic cycles. We give a purely graphical criterion for admissibilty. We show that sums of bivalent graphs correspond to coboundary elements of the algebraic cycle complex. Finally, we compute the Hodge realization for an infinite family of algebraic cycles represented by sums of graphs that are not describable in the combinatorial language of [12].

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.