Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimum Regret Search for Single- and Multi-Task Optimization

Published 2 Feb 2016 in stat.ML, cs.IT, cs.LG, cs.RO, and math.IT | (1602.01064v3)

Abstract: We propose minimum regret search (MRS), a novel acquisition function for Bayesian optimization. MRS bears similarities with information-theoretic approaches such as entropy search (ES). However, while ES aims in each query at maximizing the information gain with respect to the global maximum, MRS aims at minimizing the expected simple regret of its ultimate recommendation for the optimum. While empirically ES and MRS perform similar in most of the cases, MRS produces fewer outliers with high simple regret than ES. We provide empirical results both for a synthetic single-task optimization problem as well as for a simulated multi-task robotic control problem.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.