Pucci eigenvalues on geodesic balls (1602.00627v2)
Abstract: We study the eigenvalue problem for the Riemannian Pucci operator on geodesic balls. We establish upper and lower bounds for the principal Pucci eigenvalues depending on the curvature, extending Cheng's eigenvalue comparison theorem for the Laplace-Beltrami operator. For manifolds with bounded sectional curvature, we prove Cheng's bounds hold for Pucci eigenvalues on geodesic balls of radius less than the injectivity radius. For manifolds with Ricci curvature bounded below, we prove Cheng's upper bound holds for Pucci eigenvalues on certain small geodesic balls. We also prove that the principal Pucci eigenvalues of an $O(n)$-invariant hypersurface immersed in $\mathbb{R}{n+1}$ with one smooth boundary component are smaller than the eigenvalues of an $n$-dimensional Euclidean ball with the same boundary.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.