Slow Reflection (1601.08214v2)
Abstract: We describe a "slow" version of the hierarchy of uniform reflection principles over Peano Arithmetic ($\mathbf{PA}$). These principles are unprovable in Peano Arithmetic (even when extended by usual reflection principles of lower complexity) and introduce a new provably total function. At the same time the consistency of $\mathbf{PA}$ plus slow reflection is provable in $\mathbf{PA}+\operatorname{Con}(\mathbf{PA})$. We deduce a conjecture of S.-D. Friedman, Rathjen and Weiermann: Transfinite iterations of slow consistency generate a hierarchy of precisely $\varepsilon_0$ stages between $\mathbf{PA}$ and $\mathbf{PA}+\operatorname{Con}(\mathbf{PA})$ (where $\operatorname{Con}(\mathbf{PA})$ refers to the usual consistency statement).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.