Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric Clustering of Functional Data Using Pseudo-Densities (1601.07872v1)

Published 28 Jan 2016 in math.ST, stat.ME, and stat.TH

Abstract: We study nonparametric clustering of smooth random curves on the basis of the L2 gradient flow associated to a pseudo-density functional and we show that the clustering is well-defined both at the population and at the sample level. We provide an algorithm to mark significant local modes, which are associated to informative sample clusters, and we derive its consistency properties. Our theory is developed under weak assumptions, which essentially reduce to the integrability of the random curves, and does not require to project the random curves on a finite-dimensional subspace. However, if the underlying probability distribution is supported on a finite-dimensional subspace, we show that the pseudo-density and the expectation of a kernel density estimator induce the same gradient flow, and therefore the same clustering. Although our theory is developed for smooth curves that belong to an infinite-dimensional functional space, we also provide consistent procedures that can be used with real data (discretized and noisy observations).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.