Fairness in Communication for Omniscience
Abstract: We consider the problem of how to fairly distribute the minimum sum-rate among the users in communication for omniscience (CO). We formulate a problem of minimizing a weighted quadratic function over a submodular base polyhedron which contains all achievable rate vectors, or transmission strategies, for CO that have the same sum-rate. By solving it, we can determine the rate vector that optimizes the Jain's fairness measure, a more commonly used fairness index than the Shapley value in communications engineering. We show that the optimizer is a lexicographically optimal (lex-optimal) base and can be determined by a decomposition algorithm (DA) that is based on submodular function minimization (SFM) algorithm and completes in strongly polynomial time. We prove that the lex-optimal minimum sum-rate strategy for CO can be determined by finding the lex-optimal base in each user subset in the fundamental partition and the complexity can be reduced accordingly.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.