On distributionally robust extreme value analysis (1601.06858v2)
Abstract: We study distributional robustness in the context of Extreme Value Theory (EVT). We provide a data-driven method for estimating extreme quantiles in a manner that is robust against incorrect model assumptions underlying the application of the standard Extremal Types Theorem. Typical studies in distributional robustness involve computing worst case estimates over a model uncertainty region expressed in terms of the Kullback-Leibler discrepancy. We go beyond standard distributional robustness in that we investigate different forms of discrepancies, and prove rigorous results which are helpful for understanding the role of a putative model uncertainty region in the context of extreme quantile estimation. Finally, we illustrate our data-driven method in various settings, including examples showing how standard EVT can significantly underestimate quantiles of interest.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.