Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The limiting spectral distribution in terms of spectral density (1601.04362v2)

Published 17 Jan 2016 in math.PR

Abstract: For a large class of symmetric random matrices with correlated entries, selected from stationary random fields of centered and square integrable variables, we show that the limiting distribution of eigenvalue counting measure always exists and we describe it via an equation satisfied by its Stieltjes transform. No rate of convergence to zero of correlations is imposed, therefore the process is allowed to have long memory. In particular, if the symmetrized matrices are constructed from stationary Gaussian random fields which have spectral density, the result of this paper gives a complete solution to the limiting eigenvalue distribution. More generally, for matrices whose entries are functions of independent identically distributed random variables the result also holds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube