Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Average Stability is Invariant to Data Preconditioning. Implications to Exp-concave Empirical Risk Minimization (1601.04011v4)

Published 15 Jan 2016 in cs.LG

Abstract: We show that the average stability notion introduced by \cite{kearns1999algorithmic, bousquet2002stability} is invariant to data preconditioning, for a wide class of generalized linear models that includes most of the known exp-concave losses. In other words, when analyzing the stability rate of a given algorithm, we may assume the optimal preconditioning of the data. This implies that, at least from a statistical perspective, explicit regularization is not required in order to compensate for ill-conditioned data, which stands in contrast to a widely common approach that includes a regularization for analyzing the sample complexity of generalized linear models. Several important implications of our findings include: a) We demonstrate that the excess risk of empirical risk minimization (ERM) is controlled by the preconditioned stability rate. This immediately yields a relatively short and elegant proof for the fast rates attained by ERM in our context. b) We strengthen the recent bounds of \cite{hardt2015train} on the stability rate of the Stochastic Gradient Descent algorithm.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.