Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Elliptic solutions and solitary waves of a higher order KdV--BBM long wave equation (1601.02878v2)

Published 25 Dec 2015 in math.AP

Abstract: We provide conditions for existence of hyperbolic, unbounded periodic and elliptic solutions in terms of Weierstrass $\wp$ functions of both third and fifth-order KdV--BBM (Korteweg-de Vries--Benjamin, Bona & Mahony) regularized long wave equation. An analysis for the initial value problem is developed together with a local and global well-posedness theory for the third-order KdV--BBM equation. Traveling wave reduction is used together with zero boundary conditions to yield solitons and periodic unbounded solutions, while for nonzero boundary conditions we find solutions in terms of Weierstrass elliptic $\wp$ functions. For the fifth-order KdV--BBM equation we show that a parameter $\gamma=\frac {1}{12}$, for which the equation has a Hamiltonian, represents a restriction for which there are constraint curves that never intersect a region of unbounded solitary waves, which in turn shows that only dark or bright solitons and no unbounded solutions exist. Motivated by the lack of a Hamiltonian structure for $\gamma\neq\frac{1}{12}$ we develop $Hk$ bounds, and we show for the non Hamiltonian system that dark and bright solitons coexist together with unbounded periodic solutions. For nonzero boundary conditions, due to the complexity of the nonlinear algebraic system of coefficients of the elliptic equation we construct Weierstrass solutions for a particular set of parameters only.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.