Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multivariate Regular Variation of Discrete Mass Functions with Applications to Preferential Attachment Networks

Published 10 Jan 2016 in math.PR | (1601.02238v1)

Abstract: Regular variation of a multivariate measure with a Lebesgue density implies the regular variation of its density provided the density satisfies some regularity conditions. Unlike the univariate case, the converse also requires regularity conditions. We extend these arguments to discrete mass functions and their associated measures using the concept that the the mass function can be embedded in a continuous density function. We give two different conditions, monotonicity and convergence on the unit sphere, both of which can make the discrete function embeddable. Our results are then applied to the preferential attachment network model, and we conclude that the joint mass function of in- and out-degree is embeddable and thus regularly varying.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.