Papers
Topics
Authors
Recent
2000 character limit reached

The dynamic $Φ^4_3$ model comes down from infinity (1601.01234v3)

Published 6 Jan 2016 in math.AP and math.PR

Abstract: We prove an a priori bound for the dynamic $\Phi4_3$ model on the torus wich is independent of the initial condition. In particular, this bound rules out the possibility of finite time blow-up of the solution. It also gives a uniform control over solutions at large times, and thus allows to construct invariant measures via the Krylov-Bogoliubov method. It thereby provides a new dynamic construction of the Euclidean $\Phi4_3$ field theory on finite volume. Our method is based on the local-in-time solution theory developed recently by Gubinelli, Imkeller, Perkowski and Catellier, Chouk. The argument relies entirely on deterministic PDE arguments (such as embeddings of Besov spaces and interpolation), which are combined to derive energy inequalities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.