Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anisotropic emission of direct photons from Au+Au collisions at $\sqrt {s_{\rm NN}}=200~{\rm GeV}$ with EPOS3 and IP-Glasma

Published 30 Dec 2015 in nucl-th and hep-ph | (1512.08833v2)

Abstract: The observed large elliptic flow ($v_2$) of direct photons in relativistic heavy ion collisions challenges us to explain. In this paper we consider only two sources of direct photons, prompt photons and thermal photons. Prompt photons are calculated with QCD to next leading order, which fits well the spectra at high transverse momentum ($p_{\rm t}$) region. Thermal photons are calculated with AMY rate in a 3+1D viscous hydrodynamical evolution of the collision systems. Two types of initial conditions, EPOS3 and IP-Glasma, are employed. Our results with IP-Glasma initial condition agree with results in published work in most cases, and the difference tells the regions effected by the absence of viscous correction in photon emission rate. Because both models are well constrained with hadron data, the hydrodynamic evolution of collision systems in the two models have many common. However, the transverse velocity of the collective motion are quite different. This makes a big difference in the anisotropic emission of direct photon emission. The observed large elliptic flow of direct photons is reproduced with EPOS3 hydrodynamic evolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. "Electromagnetic radiation from hot and dense hadronic matter," https://ectstar.fbk.eu/node/4229 (2018).
  2. Thermal photons and dileptons, https://www.bnl.gov/tpd/ (2011).
  3. [310] Thermal radiation workshop, https://www.bnl.gov/trw2012/ (2012).
  4. Electromagnetic probes of strongly interacting matter: Status and future of low-mass lepton-pair spec troscopy, http://www.ectstar.eu/node/92 (2013).
  5. Emmi rrtf on direct-photon ow puzzle, https://indico.gsi.de/conferenceDisplay.py?confId=2661 (2014).
  6. Thermal photons and dileptons in heavy-ion collisions, https://www.bnl.gov/tpd2014/ (2014).
  7. New perspectives on photons and dileptons in ultrarelativistic heavy-ion collisions at rhic and lhc, http://www.ectstar.eu/node/1232 (2015).
  8. G. David, “Direct real photons in relativistic heavy ion collisions,” Rept. Prog. Phys. 83, no.4, 046301 (2020) doi:10.1088/1361-6633/ab6f57 [arXiv:1907.08893 [nucl-ex]].
  9. C. Gale, Y. Hidaka, S. Jeon, S. Lin, J. F. Paquet, R. D. Pisarski, D. Satow, V. V. Skokov and G. Vujanovic, “Production and Elliptic Flow of Dileptons and Photons in a Matrix Model of the Quark-Gluon Plasma,” Phys. Rev. Lett. 114, 072301 (2015) doi:10.1103/PhysRevLett.114.072301 [arXiv:1409.4778 [hep-ph]].
  10. H. van Hees, C. Gale and R. Rapp, “Thermal Photons and Collective Flow at the Relativistic Heavy-Ion Collider,” Phys. Rev. C 84, 054906 (2011) doi:10.1103/PhysRevC.84.054906 [arXiv:1108.2131 [hep-ph]].
  11. O. Linnyk, W. Cassing and E. L. Bratkovskaya, “Centrality dependence of the direct photon yield and elliptic flow in heavy-ion collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV,” Phys. Rev. C 89, no.3, 034908 (2014) doi:10.1103/PhysRevC.89.034908 [arXiv:1311.0279 [nucl-th]].
  12. M. Chiu, T. K. Hemmick, V. Khachatryan, A. Leonidov, J. Liao and L. McLerran, “Production of Photons and Dileptons in the Glasma,” Nucl. Phys. A 900, 16-37 (2013) doi:10.1016/j.nuclphysa.2013.01.014 [arXiv:1202.3679 [nucl-th]].
  13. A. Monnai, “Thermal photon v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with slow quark chemical equilibration,” Phys. Rev. C 90, no.2, 021901 (2014) doi:10.1103/PhysRevC.90.021901 [arXiv:1403.4225 [nucl-th]].
  14. C. Gale, J. F. Paquet, B. Schenke and C. Shen, “Multimessenger heavy-ion collision physics,” Phys. Rev. C 105, no.1, 014909 (2022) doi:10.1103/PhysRevC.105.014909 [arXiv:2106.11216 [nucl-th]].
  15. M. Jia, H. Li and D. Hou, “The photon production and collective flows from magnetic induced gluon fusion and splitting in early stage of high energy nuclear collision,” Phys. Lett. B 846, 138239 (2023) doi:10.1016/j.physletb.2023.138239 [arXiv:2211.16770 [hep-ph]].
  16. A. Ayala, J. D. Castaño-Yepes, L. A. Hernández, A. J. Mizher, M. E. Tejeda-Yeomans and R. Zamora, “Anisotropic photon emission from gluon fusion and splitting in a strong magnetic background: The two-gluon one-photon vertex,” Phys. Rev. C 106, no.6, 064905 (2022) doi:10.1103/PhysRevC.106.064905 [arXiv:2209.09364 [hep-ph]].
  17. K. Werner, B. Guiot, I. Karpenko and T. Pierog, “Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3,” Phys. Rev. C 89, no.6, 064903 (2014) doi:10.1103/PhysRevC.89.064903 [arXiv:1312.1233 [nucl-th]].
  18. K. Werner, I. Karpenko, T. Pierog, M. Bleicher and K. Mikhailov, “Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions,” Phys. Rev. C 82, 044904 (2010) doi:10.1103/PhysRevC.82.044904 [arXiv:1004.0805 [nucl-th]].
  19. B. Schenke, P. Tribedy and R. Venugopalan, “Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions,” Phys. Rev. C 86, 034908 (2012) doi:10.1103/PhysRevC.86.034908 [arXiv:1206.6805 [hep-ph]].
  20. B. Schenke, P. Tribedy and R. Venugopalan, “Fluctuating Glasma initial conditions and flow in heavy ion collisions,” Phys. Rev. Lett. 108, 252301 (2012) doi:10.1103/PhysRevLett.108.252301 [arXiv:1202.6646 [nucl-th]].
  21. F. M. Liu, T. Hirano, K. Werner and Y. Zhu, “Centrality-dependent direct photon p(t) spectra in Au + Au collisions at RHIC,” Phys. Rev. C 79, 014905 (2009) doi:10.1103/PhysRevC.79.014905 [arXiv:0807.4771 [hep-ph]].
  22. A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, “MRST2001: Partons and αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT from precise deep inelastic scattering and Tevatron jet data,” Eur. Phys. J. C 23, 73 (2002) [arXiv:hep-ph/0110215].
  23. F. M. Liu, T. Hirano, K. Werner and Y. Zhu, “Elliptic flow of thermal photons in Au + Au collisions at s(NN)**(1/2) = 200-GeV,” Phys. Rev. C 80, 034905 (2009) doi:10.1103/PhysRevC.80.034905 [arXiv:0902.1303 [hep-ph]].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.