Papers
Topics
Authors
Recent
2000 character limit reached

Quantum walk as a simulator of nonlinear dynamics: Nonlinear Dirac equation and solitons

Published 28 Dec 2015 in quant-ph | (1512.08358v1)

Abstract: Quantum walk (QW) provides a versatile tool to study fundamental physics and also to make a variety of practical applications. We here start with the recent idea of {\it nonlinear} QW and show that introducing {\it nonlinearity} to QW can lead to a wealth of remarkable possibilities, e.g., simulating nonlinear quantum dynamics thus enhancing the applicability of QW above the existing level for a universal quantum simulator. As an illustration, we show that the dynamics of a nonlinear Dirac particle can be simulated on an optical nonlinear QW platform implemented with a measurement-based-feedforward scheme. The nonlinear evolution induced by the feed-forward introduces a self-coupling mechanism to (otherwise linear) Dirac particles, which accordingly behave as a \emph{soliton}. We particularly consider two kinds of nonlinear Dirac equations, one with a scalar-type self-coupling (Gross-Neveu model) and the other with a vector-type one (Thirring model), respectively. Using their known stationary solutions, we confirm that our nonlinear QW framework is capable of exhibiting characteristic features of a soliton. Furthermore, we show that the nonlinear QW enables us to observe and control an enhancement and suppression of the ballistic diffusion.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.