Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Surface tension and the Mori-Tanaka theory of non-dilute soft composite solids (1512.08089v1)

Published 26 Dec 2015 in cond-mat.soft

Abstract: Eshelby's theory is the foundation of composite mechanics, allowing calculation of the effective elastic moduli of composites from a knowledge of their microstructure. However it ignores interfacial stress and only applies to very dilute composites -- i.e. where any inclusions are widely spaced apart. Here, within the framework of the Mori-Tanaka multiphase approximation scheme, we extend Eshelby's theory to treat a composite with interfacial stress in the non-dilute limit. In particular we calculate the elastic moduli of composites comprised of a compliant, elastic solid hosting a non-dilute distribution of identical liquid droplets. The composite stiffness depends strongly on the ratio of the droplet size, $R$, to an elastocapillary length scale, $L$. Interfacial tension substantially impacts the effective elastic moduli of the composite when $R/L\lesssim 100$. When $R < 3L/2$ ($R=3L/2$) liquid inclusions stiffen (cloak the far-field signature of) the solid.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.