Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A scalable quasi-Bayesian framework for Gaussian graphical models (1512.07934v1)

Published 25 Dec 2015 in math.ST and stat.TH

Abstract: This paper deals with the Bayesian estimation of high dimensional Gaussian graphical models. We develop a quasi-Bayesian implementation of the neighborhood selection method of Meinshausen and Buhlmann (2006) for the estimation of Gaussian graphical models. The method produces a product-form quasi-posterior distribution that can be efficiently explored by parallel computing. We derive a non-asymptotic bound on the contraction rate of the quasi-posterior distribution. The result shows that the proposed quasi-posterior distribution contracts towards the true precision matrix at a rate given by the worst contraction rate of the linear regressions that are involved in the neighborhood selection. We develop a Markov Chain Monte Carlo algorithm for approximate computations, following an approach from Atchade (2015). We illustrate the methodology with a simulation study. The results show that the proposed method can fit Gaussian graphical models at a scale unmatched by other Bayesian methods for graphical models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.